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ABSTRACT 25 

Background: Nitrate derived from vegetables is consumed as part of a normal diet and is 26 

reduced endogenously via nitrite to nitric oxide. It has been shown to improve endothelial 27 

function, reduce blood pressure and the oxygen cost of sub-maximal exercise, and increase 28 

regional perfusion in the brain.  29 

Objectives: The current study assessed the effects of dietary nitrate on cognitive performance 30 

and prefrontal cortex cerebral blood flow (CBF) parameters in healthy adults. 31 

Design: In this randomised, double-blind, placebo-controlled, parallel-groups study 40 32 

healthy adults received either placebo or 450 ml beetroot juice (~5.5 mmol nitrate). Following 33 

a 90 minute drink/absorption period, participants performed a selection of cognitive tasks that 34 

activate the frontal cortex for 54 minutes. Near-Infrared Spectroscopy (NIRS) was used to 35 

monitor CBF and hemodynamics, as indexed by concentration changes in oxygenated and 36 

deoxygenated-haemoglobin, in the frontal cortex throughout. The bioconversion of nitrate to 37 

nitrite was confirmed in plasma by ozone-based chemi-luminescence. 38 

Results: Dietary nitrate increased levels of nitrite, and modulated the hemodynamic response 39 

to task performance, with an initial increase in CBF at the start of the task period, followed by 40 

consistent reductions during the least demanding of the three tasks utilised. Cognitive 41 

performance was improved on the Serial 3s subtraction task.  42 

Conclusions: These results show that single doses of dietary nitrate can modulate the CBF 43 

response to task performance and improve cognitive performance, and suggest one possible 44 

mechanism by which vegetable consumption may have beneficial effects on brain function. 45 

 46 

 47 



3 

 

INTRODUCTION 48 

The ubiquitous signalling molecule nitric oxide (NO) plays a modulatory role in a host of key 49 

physiological processes, including mitochondrial and platelet function, host defence 50 

mechanisms [1, 2], neurotransmission, peripheral and cerebral vaso-dilation [3, 4], and the 51 

neurovascular coupling of neural activity to local cerebral blood flow (CBF) [5-7]. In most 52 

tissues NO is synthesised from L-arginine and is rapidly oxidised to nitrite (NO2
-
) and nitrate 53 

(NO3
-
) [8]. However, evidence suggests that circulating nitrite can also be reduced back to 54 

NO by a wide range of proteins and enzymes in blood and tissue, including deoxygenated 55 

haemoglobin, myoglobin, xanthine oxidase, aldehyde oxidase, neuroglobin, cytochrome P 56 

450 and NO synthase [9]. Furthermore, nitrite has also been identified as a cellular signalling 57 

molecule, independent of its relationship with NO [10]. 58 

Endogenous levels of nitrate, produced as a by-product of the L-arginine/NO pathway, can be 59 

augmented by direct sequestration from dietary sources, most notably by eating vegetables 60 

high in nitrate; e.g. spinach, lettuce, broccoli and beetroot [11]. Circulating nitrate from both 61 

endogenous and dietary sources is actively sequestered and concentrated into saliva before 62 

being converted to nitrite by commensal salivary bacteria in the mouth [12]. Entero-salivary 63 

recirculation of additional dietary nitrate therefore leads to a sustained increase in circulating 64 

nitrite. Following ingestion, nitrate levels peak in plasma following ~90 minutes and nitrite 65 

reaches a peak after ~2.5 hours [13]. The reduction of nitrite to NO is particularly prevalent in 66 

hypoxic conditions [14], but also takes place in normoxic conditions wherein conversion rates 67 

can be modulated by the presence of reducing agents, the local oxygen tension and pH levels 68 

[8, 15]. 69 

The ingestion of nitrate, including from dietary sources, is associated with a number of effects 70 

consistent with increased levels of endogenous NO synthesis, including reductions in blood 71 
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pressure [16-20]. This effect has been demonstrated as early as three hours after a single dose 72 

of nitrate rich beetroot juice, with a concomitant protection of forearm endothelial function 73 

and in vitro inhibition of platelet aggregation [13]. Dietary nitrate has also been shown to 74 

reduce the overall oxygen cost of sub-maximal exercise 2.5 hours after ingestion [21] and 75 

after three or more days administration [17, 21-23]. Similarly, an increase in peak power and 76 

work-rate [21], a speeding of VO2 mean response time in healthy 60-70yr olds [19] and 77 

delayed time to task failure during severe exercise [22, 23] have also been reported following 78 

the consumption of nitrate rich beetroot juice daily for 4 to 15 days. Nitrate related reductions 79 

have also been demonstrated with regards the rate of adenosine-5'-triphosphate (ATP) 80 

turnover using magnetic resonance spectroscopy [22], whilst improved oxygenation [23] has 81 

been confirmed directly in the muscle during exercise using Near-Infrared Spectroscopy 82 

(NIRS).  83 

NO plays a pivotal role in cerebral vasodilation and the neurovascular coupling of local neural 84 

activity and blood-flow [24] and enhanced cerebral blood perfusion has been observed in the 85 

prefrontal cortex in response to increased circulating levels of dietary nitrate [11]. Several 86 

studies have probed the effects of dietary nitrate derived from beetroot or spinach on brain 87 

function, including three studies that have included some form of cognitive testing either as 88 

an additional measure [19, 20], or as the primary focus of the project [25]. Whilst these 89 

studies demonstrated modulation of a number of physiological parameters they did not 90 

provide evidence of cognitive improvements, possibly due to comparatively small sample 91 

sizes and other methodological factors. Two studies have also investigated the effects of 92 

dietary nitrate on cerebral blood-flow parameters. In the first of these, Presley et al. [11] 93 

demonstrated, using arterial spin labelling magnetic resonance imaging (MRI), that a diet high 94 

in nitrate consumed for 24 hours increased regional white matter perfusion in elderly humans, 95 

but with this effect restricted to areas of the frontal cortex. More recently Aamand et al. 96 
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(2013), investigated the effects of 3 days administration of dietary nitrate (sodium nitrate) on 97 

the haemodynamic response in the visual cortex elicited by visual stimuli, as assessed by 98 

functional MRI (fMRI). They demonstrated a faster, smaller and less variable blood-oxygen-99 

level dependent (BOLD) response following nitrate, which they interpreted as indicating an 100 

enhanced neurovascular coupling of local CBF to neuronal activity. As the BOLD response 101 

simply reflects the contrasting magnetic signals of oxygenated and deoxygenated 102 

haemoglobin (with increased activity imputed from an assumed relative decrease in 103 

deoxyhaemoglobin as local activation engenders a greater influx of blood borne oxygenated –104 

Hb), it cannot disentangle the contributions of changes in blood-flow and changes in oxygen 105 

consumption to the overall signal. The current study therefore utilised Near-Infrared 106 

Spectroscopy (NIRS), a brain imaging technique that has the advantage over fMRI BOLD in 107 

that it measures both concentration changes in deoxy-Hb and overall local CBF (changes in 108 

oxy-Hb and deoxy-Hb combined).  109 

The current double-blind, placebo controlled, parallel groups study investigated the effects of 110 

a single dose of dietary nitrate on cognitive performance and the CBF haemodynamic 111 

response in the prefrontal cortex during tasks that activate this brain region. 112 

 113 

 114 

MATERIALS AND METHODS 115 

Participants:  116 

40 healthy adults (mean age 21.28y, range 18-27y) took part in the study. Prior to attending 117 

the laboratory all participants refrained from eating for 12 hours, and consumed no vegetables 118 

for 36 hours prior to testing. Participants were allowed their usual morning caffeinated 119 
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beverages, but consumed no caffeine for a minimum of 2 hours prior to the assessment. The 120 

age and physical characteristics of the two groups are shown in Table 1. 121 

All participants reported themselves to be in good health and free from illicit drugs, alcohol, 122 

prescription medication and herbal extracts/food supplements. Participants who had suffered a 123 

neurological disorder or neuro-developmental disorder were excluded from participation, as 124 

were those who had any relevant food allergies or intolerances, smoked tobacco, drank 125 

excessive amounts of caffeine (more than 6 cups of coffee per day) or took illicit social drugs.  126 

The study received ethical approval from the Northumbria University department of 127 

Psychology and Sport Sciences Ethics Committee and was conducted according to the 128 

Declaration of Helsinki (1964). All participants gave their informed consent prior to their 129 

inclusion in the study. Prior to data collection this study was registered on the 130 

clinicaltrials.gov website with the following reference number: NCT01169662.  131 

 132 

Table 1. Age and physical characteristics of participants 133 
 134 

 Placebo n=20 Beetroot n=20 

Age (years) 21.40 0.73 21.15 0.48 

Male/Female    7/13    5/15 

Height (M) 1.71 0.02 1.70 0.02 

Weight (Kg) 74.93 3.43 68.24 3.12 

BMI  25.39 0.80 23.34 0.72 

Heart Rate 
(bpm)  

pre 64.3 2.05 66.85 2.24 

post 59.4 1.54 67.15 2.38* 

Systolic  BP 
pre 115 2.3 114.6 3.16 

post 116.8 2.26 115.7 2.48 

Diastolic  `BP pre 74.2 1.86 73.15 1.61 

post 79.05 1.91 76.35 1.59 

Nitrite  (nM) 
pre 228 14.8 226 23.2 

post 246 28.2 598 78.3* 

 135 

Physical characteristic data (means plus SEMs) from the placebo and dietary nitrate conditions (n = 20 136 
per group) including pre and post-treatment heart rate, blood pressure and plasma nitrite 137 
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measurements. Analysis on the latter measures was by two-way ANOVA with Bonferroni adjusted 138 
post-hoc comparisons (* P < 0.05, placebo versus dietary nitrate at that time point). 139 

 140 

Treatments:  141 

Participants were randomly assigned to receive either: 142 

a) 450 ml organic beetroot juice (including 10% Apple juice - Beet It, James White Drinks, 143 

Ipswich, UK) containing 5.5 mmol nitrate [23] plus 50 ml low calorie apple and blackcurrant 144 

juice cordial, 145 

Or  146 

b) A placebo drink with negligible nitrate content composed of 50 ml low calorie apple and 147 

blackcurrant juice cordial plus 50 ml apple juice, diluted to 500 ml.  148 

The drinks were served chilled in opaque, lidded containers in three equally sized portions 149 

(166 ml per portion). Participants were given one third of the drink at the start of the 150 

absorption period, with the remaining two thirds of the drink consumed 10 and 20 minutes 151 

later. Participants were instructed to drink the drink slowly, through a straw, over each 10 152 

minute period.  153 

The drinks were prepared by a neutral third-party according to the computer generated 154 

randomisation list and administered double-blind by the researchers. Given the disparity in 155 

taste between the treatments the study was run with a between-subjects design and 156 

participants were simply informed that the study was investigating the CBF effects of fruit or 157 

vegetable drinks. They were given no information on the experimental aims, the identity of 158 

the drinks, or the nitrate contents or potential physiological effects of the beetroot juice (other 159 

than being informed of the possibility of discoloured urine). 160 

 161 
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Near-Infrared spectroscopy:  162 

Functional Near-Infrared Spectroscopy (NIRS) is a brain imaging technique that is predicated 163 

on the intrinsic optical absorption properties of oxygenated (oxy-Hb) and deoxygenated 164 

(deoxy-Hb) haemoglobin following the introduction of near- infrared light through the intact 165 

skull. When assessed by NIRS, the increase in CBF in the surface layers of the cortex during 166 

localized neural activity is seen as an increase in the total concentration of haemoglobin 167 

(total-Hb) and comparative decrease in deoxy-Hb [26] with both parameters corresponding 168 

strongly with the functional magnetic resonance imaging (fMRI) blood oxygen level 169 

dependent (BOLD) signal [26-28]. NIRS has been used extensively as a technique for 170 

multiple-channel imaging of task related brain activity over relevant areas of the head [29], 171 

including in groups suffering from potential decrements in CBF [30]. To date, a growing 172 

number of pharmacological intervention studies have also used the technique to infer 173 

localized brain activity [31] and CBF and oxygenation [32] from changes in haemoglobin 174 

concentrations. The paradigm employed here has been shown to be sensitive to both increased 175 

[33-35] and decreased [36, 37] CBF in the prefrontal cortex of healthy young volunteers 176 

following nutritional interventions.  177 

In the current study relative changes in the absorption of near- infrared light were measured at 178 

a time resolution of 10Hz using a 12 channel Oxymon system (Artinis Medical Systems 179 

B.V.). The system emitted two nominal wavelengths of light (~765- and 855nm) with an 180 

emitter/optode separation distance of 4cm. The differential pathlength factor was adjusted 181 

according to the age of the participant. Relative concentration changes in oxy-Hb, deoxy-Hb 182 

and total-Hb were calculated by means of a modified Beer-Lambert law [38] using the 183 

proprietorial software.  184 
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In this study, given the extended recording period and the investigational aims, a simple two 185 

emitter/optode pair configuration was utilised (i.e. 2 channels). The emitter/optode pairs were 186 

positioned over the left and right frontal cortex using a standard optode holder headband, 187 

which separated the pairs from each other by 4cm. Each pair therefore collected data from an 188 

area of prefrontal cortex that included the areas corresponding to the International 10-20 189 

system Fp1 and Fp2 electroencephalogram (EEG) positions. 190 

The NIRS data output was time stamped at the start of each task segment to assure that data 191 

corresponded to the relevant epoch of task performance. 192 

 193 

Blood sampling and determination of plasma nitrite levels: 194 

Blood was collected in lithium-heparin vacutainer tubes and was centrifuged at 4,000 rpm at 195 

4°C for 10 minutes, commencing within 3 minutes of collection. Plasma was subsequently 196 

extracted and immediately frozen at -80°C for later analysis. 197 

For the subsequent analysis all glass wear, utensils and surfaces were rinsed with deionised 198 

water to remove residual NO2
- 
prior to analysis. After thawing at room temperature, plasma 199 

samples were initially de-proteinized using cold ethanol precipitation. The ethanol was chilled 200 

to 0°C and 1 ml of cold ethanol was added to 0.5 ml of plasma sample, after which the sample 201 

was vortexed and left to stand at 0°C for 30 minutes. Thereafter, samples were centrifuged at 202 

14000 rpm for 5 minutes and the supernatant was removed. The [NO2
-
] of the deproteinized 203 

plasma samples was determined using a modification [23] of the chemi-luminescence 204 

technique [39].   205 

 206 

 207 
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Blood pressure and heart rate: 208 

Sitting blood pressure and heart rate readings were collected using a Boso Medicus Prestige 209 

blood pressure monitor with the subject’s arm supported at the level of the heart and with 210 

their feet flat on the floor. Readings were taken following completion of the baseline tasks 211 

and again following completion of the post-dose tasks. 212 

 213 

Cognitive tasks:  214 

The 3 tasks used here were previously shown to activate the prefrontal cortex in brain-215 

imaging studies [40-42]. The objective of this collection of tasks was generally to assess the 216 

effect of the treatment on speed/accuracy and mental fatigue during continuous performance 217 

of cognitively demanding or “effortful” tasks. Multiple completions of the 9 minute battery of 218 

tasks (see below) has previously been shown to reliably increase self-ratings of mental fatigue 219 

and to be sensitive to many natural interventions [43-46]. The 9 minute battery consists of 4 220 

minutes of Serial Subtractions, 5 minutes of Rapid Visual Information Processing (RVIP), 221 

and a Mental Fatigue visual analogue scale.  222 

The original verbal Serial 7s test has appeared in many forms, including as part of the Mini-223 

Mental State Examination for dementia screening. In the current study, a modified, 4 minute, 224 

computerized version of the Serial Subtraction task was used [47], which consists of 2 225 

minutes of Serial 3s followed by 2 minutes of Serial 7s subtractions. At the start of each 2 226 

minute section, a standard instruction screen informed the participants to count backwards in 227 

3s or 7s, as quickly and accurately as possible, using the keyboard’s linear number keys to 228 

enter each response. Participants were also instructed verbally at the outset that if they were to 229 

make a mistake they should continue subtracting from the new incorrect number. A random 230 

starting number between 800 and 999 was presented on the computer screen, which was 231 
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cleared by the entry of the first response. Each 3-digit response was represented on screen by 232 

an asterisk. Pressing the enter key signalled the end of each response and cleared the 3 233 

asterisks from the screen. Performance data (total number of subtractions and number of 234 

errors) were calculated for the Serial 3s and 7s elements separately. In the case of incorrect 235 

responses, subsequent responses were scored as positive if they were correct in relation to the 236 

new number. 237 

The RVIP task has been widely used to study the cognitive effects of psychotropic drugs. The 238 

participant monitors a continuous series of single digits for targets of 3 consecutive odd or 3 239 

consecutive even digits. The digits are presented on the computer screen at the rate of 240 

100/minute in pseudo-random order, and the participant responds to the detection of a target 241 

string by pressing the space bar as quickly as possible. The task is continuous and lasts for 5 242 

minutes, with 8 correct target strings being presented in each minute. The task is scored for 243 

number of target strings correctly detected, average reaction time for correct detections, and 244 

number of false alarms. 245 

With the mental fatigue visual analogue scale, participants rated their subjective feelings of 246 

mental fatigue via an on-screen 100mm visual analogue scale with the endpoints labelled as 247 

‘not at all’ and ‘extremely’. The scale was scored as a percentage along the line toward 248 

‘extremely’.  249 

In this instance the tasks described above were repeated six times in succession (i.e. ~54 250 

minutes of task performance). The tasks (and mood scales) were presented using the 251 

COMPASS cognitive assessment system (Northumbria University, Newcastle, UK). 252 

 253 

 254 

 255 
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Mood: 256 

Mood was assessed with Bond-Lader mood scales [48], which have been utilised in numerous 257 

pharmacological, psychopharmacological and medical trials. These scales comprise a total of 258 

sixteen 100mm lines anchored at either end by antonyms (e.g. ‘alert-drowsy’, ‘calm-excited’). 259 

Participants indicate their current subjective position between the antonyms on the line. 260 

Outcomes comprise three factor analysis derived scores: ‘Alertness’, ‘Calmness’ and 261 

‘Contentment’. 262 

 263 

Procedure:  264 

Each participant was required to attend the laboratory on two occasions. The first of these was 265 

an initial screening/training visit, and this was followed within 21 days by the active study 266 

morning. During the initial visit participants provided written informed consent and were 267 

screened with regards the study exclusion/inclusion criteria. Training was given on the 268 

cognitive tasks and the compliance requirements for the following visit were explained. 269 

On the active study morning participants attended the laboratory between 8.30 and 9.30 am 270 

and provided confirmation of their compliance with the inclusion/exclusion requirements. 271 

Participants then gave a venous blood sample, completed the Bond-Lader mood scales, made 272 

a baseline completion of the three tasks (Serial 3s, 7s, RVIP), and had their blood pressure 273 

and heart rate measured. Participants were then fitted with the NIRS headband. After 5 274 

minutes the 10 minute resting baseline period commenced. During this time, and the 275 

subsequent absorption period, participants watched a non-arousing DVD. The study drink was 276 

presented to the participant in three equal amounts at 10 minute intervals at the start of the 90 277 

minute absorption period. At the end of the absorption period participants were then verbally 278 

instructed to start the period of task performance, during which they completed the Bond-279 
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Lader mood scales and then made 6 consecutive repetitions of the Serial Subtractions and 280 

RVIP tasks (i.e. 54 minutes of continuous performance). Following task completion they 281 

completed the Bond-Lader mood scales for a final time, had their blood pressure and heart 282 

rate measured and provided a venous blood sample. The timelines and running order of the 283 

testing session are shown in Figure 1.  284 

 285 

 286 

Figure 1. Timelines of each assessment. On arrival participants provided a blood sample, completed 287 
mood scales and one repetition of the cognitive tasks, after which blood pressure and heart rate were 288 
measured. Following a 10 minute resting/baseline period they consumed their day’s drink in 3 portions 289 
that were sipped over 30 minutes in total. After a further 60 minutes they completed the mood scales 290 
and the cognitive tasks 6 times in succession (i.e. 54 minutes in total), after which they completed the 291 
mood scales for a final time, had their heart rate and blood pressure measured and provided a further 292 
blood sample. NIRS data was collected throughout the resting/baseline, absorption and cognitive task 293 
periods, with the last three minutes of the pre-treatment resting phase used to baseline adjust all post-294 
treatment data. 295 

 296 

 297 
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Statistical analyses: 299 

The analyses of NIRS data were conducted with Minitab 15 for Windows (Minitab Inc, State 300 

College, PA) and behavioural data with SPSS 16.0 for Windows (SPSS Inc, Chicago, IL). 301 

NIRS data was converted to ‘change from baseline’ (calculated from a 3 minute pre-treatment 302 

resting period) and averaged across 2 minute epochs during the 90 minute ‘resting/absorption’ 303 

period, and 2 minute (Serial Subtractions) or 2.5 minute (RVIP, 5 minutes per repetition in 304 

total) epochs during the cognitive task performance period. As the duration of each complete 305 

epoch of averaged NIRS data entered into the analysis was substantially longer than the 306 

potential physiological oscillations that can cause drift in shorter periods of NIRS recording 307 

[49] no adjustment was required to control for this phenomenon. 308 

Prior to the primary analyses a within subjects Analysis of Variance (ANOVA) was carried 309 

out with left/right optode included as a factor (hemisphere x treatment group x epoch) to 310 

examine any hemispheric differences in response. As there were no treatment related 311 

interactions involving this factor the data from the two channels were averaged across 312 

hemispheres for the analysis and figures reported below. 313 

The primary analysis of the averaged NIRS data (total- and deoxy-Hb) was conducted by 314 

ANOVAs (treatment group x epoch) performed separately with data from the absorption 315 

period and the task period. In order to assess the effects of the differential task demands on 316 

haemoglobin concentrations an ANOVA (treatment x task [subtractions/RVIP] x epoch x 317 

repetition [1 to 6]) of the task period data was also conducted. Subsequent a priori planned 318 

comparisons of data from each 2 minute epoch during both the absorption and cognitive task 319 

periods were made between the placebo and dietary nitrate condition using t tests calculated 320 

with the Mean Squares Error [50] from the appropriate ANOVA. The planned comparisons 321 

were subjected to a Bonferroni adjustment for multiple comparisons. In order to reduce the 322 
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potential for Type I errors only those planned comparisons associated with a significant (p < 323 

0.05) main effect of treatment or interaction between treatment and epoch on the primary 324 

ANOVA are reported.  325 

Individual task performance data from the Serial 3s and Serial 7s subtraction tasks, the RVIP, 326 

and the fatigue scales, were analysed by 2-way mixed Analysis of Covariance (ANCOVA) 327 

(treatment x repetition [1 to 6]) using the pre-treatment score as a covariate, with planned 328 

comparisons for adjusted data from each repetition as described above. Bond-Lader mood 329 

factor scores, heart rate, blood pressure and plasma nitrite level data were analysed by two-330 

way ANOVA (treatment x pre-post treatment) with Bonferroni adjusted post-hoc 331 

comparisons.  332 

 333 

 334 

RESULTS 335 

Plasma nitrite 336 

Plasma levels of nitrite were significantly raised in the beetroot condition (P < 0.01) by the 337 

end of the assessment: see right panel of Figure 2 for graphical depiction. 338 
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Figure 2. Serial 3 subtraction performance and plasma nitrite levels. Left panel: Adjusted mean 340 
(±SEM error bar) number of correct Serial 3s generated in 2 minutes averaged across the 6 post-341 
treatment repetitions of the tasks. Right panel: Mean (±SEM error bar) plasma nitrite levels pre-342 
treatment and at the end of testing (~150 minutes post-treatment). (    and ○= placebo;     and ● = 450 343 
ml of beetroot juice containing 5.5 mmol nitrate). 344 
 345 
(Footnote) The study followed a parallel groups design (n = 20 per condition). The Serial 3s task was 346 
repeated 6 times in total commencing 90 minutes post-dose. Analysis was by 2-way ANCOVA 347 
(treatment x repetition [1 to 6]) using the pre-treatment score as a covariate. The main effect of 348 
treatment was significant (P < 0.05). Blood samples were taken pre-treatment and at the end of the 349 
testing session (~150 minutes post-treatment). Plasma nitrite levels were assessed by ozone-based 350 
chemi-luminescence. Statistical analysis was by ANOVA (pre/post x treatment) with post-hoc 351 
Bonferroni t tests comparisons between means (* = P < 0.05). 352 

 353 

 354 

 NIRS parameters 355 

Total haemoglobin (total-Hb): The ANOVA showed that there was a significant interaction 356 

between epoch and treatment (P < 0.01) during the 90 minute absorption period. Reference to 357 

the planned comparisons showed that the concentration of total-Hb (and therefore CBF) was 358 

higher following consumption of dietary nitrate throughout the ten epochs spanning 13 to 32 359 

minutes post-dose (all p < 0.05). There was also a significant epoch x treatment interaction on 360 

the ANOVA of data from the task period (P < 0.05), with the planned comparisons showing 361 

that, following the consumption of dietary nitrate, whereas total-Hb was increased during the 362 

first epoch of task performance (91-92 min (during Serial 3s), P < 0.05), it was decreased in 363 

comparison to placebo during both epochs of the last 5 repetitions of the RVIP task (all P < 364 

0.01) as well as the final repetition of the serial 3s task (P < 0.01). Reference to the secondary 365 

ANOVA (treatment x task x epoch x repetition) assessing task related differences showed that 366 

the treatment x task interaction narrowly failed to reach significance (P < 0.1). 367 

Deoxygenated haemoglobin (deoxy-Hb): The initial ANOVAs showed that treatment with 368 

dietary nitrate narrowly failed to significantly modulate deoxy-Hb, with a strong trend 369 

towards a treatment x epoch interaction (P < 0.1) during the task period. Mean changes in 370 
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total-Hb and deoxy-Hb across the absorption and task performance periods are shown in 371 

Figure 3. with data from the task period presented in greater detail in Figure 4. 372 
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Figure 3. Concentration changes in deoxy- and total-Hb. Graph depicts mean (±SEM error bar) 374 
concentration changes in total levels of haemoglobin (total-Hb) and deoxygenated haemoglobin 375 
(deoxy-Hb) during a 90 minute absorption period (averaged to 1 time-point) and subsequent 54 376 
minutes of cognitive task performance, following placebo (○), and 450 ml of beetroot juice containing 377 
5.5 mmol nitrate (●). Data in the top and bottom panels are graphed to the same scale. 378 

(Footnote) The study followed a parallel groups design (n = 20 per condition). Data are averaged 379 
across 2 minute (absorption period, serial subtractions) or 2.5 minute (RVIP) epochs. Analysis with 380 
repeated measures ANOVA showed a significant treatment x epoch interaction (P < 0.05) for total 381 
haemoglobin concentrations (i.e. CBF – top panel) during both the absorption and cognitive task 382 
periods, with no significant effect for deoxygenated haemoglobin (bottom panel). A priori planned 383 
comparisons comparing data from each dietary nitrate group to placebo for each epoch were carried 384 
out with t tests incorporating Mean Squares Error from the ANOVA with a Bonferroni adjustment for 385 
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multiplicity. Significance on the Bonferroni adjusted comparisons between placebo and dietary nitrate 386 
during the individual epoch is indicated by * (P < 0.05) and ** (P < 0.01).  387 
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Figure 4. Concentration changes in total-Hb during post-dose cognitive task period. Graph 390 
depicts mean (±SEM) concentration changes in total levels of haemoglobin (tot-Hb) during 54 minutes 391 
of cognitive task performance following placebo (○), and 450 ml of beetroot juice containing 5.5 392 
mmol nitrate (●). 393 

(Footnote) Methods and statistics are as per Figure 2. Subs = serial subtractions tasks, RVIP = Rapid 394 
Visual Information Processing task. 395 
 396 

 397 

Cognitive performance, mental fatigue and mood 398 

The ANCOVA (using baseline performance as a covariate) showed that participants’ 399 

performance improved significantly in terms of the number of correct Serial 3s subtractions 400 

following the consumption of dietary nitrate (P < 0.05). There were no other significant 401 

improvements seen in terms of the other tasks (Serial 7s, RVIP), the three Bond-Lader mood 402 

factors, or ratings of mental fatigue. It should be noted that the dietary nitrate group under-403 
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performed the placebo group prior to treatment (mean correct Serial 3s subtractions: dietary 404 

nitrate 35.6, Placebo 50.15). The adjusted mean number of serial 3s subtractions (plus SEMs) 405 

are presented graphically in the left panel of Figure 2.  406 

Blood pressure and heart rate  407 

There was no significant modulation of blood pressure during the single post-dose 408 

measurement that was taken following completion of the task period. However, heart rate 409 

dropped significantly from pre-treatment levels in the placebo condition but not the beetroot 410 

condition (P < 0.05).   411 

 412 

 413 

DISCUSSION 414 

In the current study the consumption of nitrate rich beetroot juice resulted in a modulation of 415 

the haemodynamic response in the prefrontal cortex during the performance of tasks that 416 

activate this brain area. In this case the pattern following nitrate was most notably of an initial 417 

transient rise in CBF at the beginning of the task period, followed by consistent significant 418 

reductions in CBF during each repetition of the RVIP task. No significant effects were seen 419 

with regards concentrations of deoxy-Hb. Alongside these hemodynamic effects, performance 420 

of the serial 3s subtraction task was also improved following dietary nitrate. The absorption of 421 

nitrate and subsequent reduction to nitrite seen in previous studies [19, 20, 23] was confirmed.  422 

The primary investigational question here was whether dietary nitrate would modulate 423 

haemodynamic responses in the prefrontal cortex during the performance of tasks that activate 424 

this area of the brain. The pattern of hemodynamic effects following dietary nitrate was for an 425 

initial significant increase in CBF, as indexed by total-Hb, at the very outset of task 426 
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performance (i.e. the first Serial 3s), followed by consistent reductions during the RVIP task, 427 

culminating in reduced CBF during both the Serial 3s task and RVIP during their last 428 

repetitions. The concentration of deoxy-Hb was not significantly modulated here, but it is 429 

worth noting that the pattern was for a reduced concentration throughout the task period (See 430 

bottom portion of figure 3).  431 

Despite the markedly differing methodologies, the results here could be described as being 432 

consistent with those of the Aamand et al. [51] fMRI study, which demonstrated a faster and 433 

smaller BOLD response in the visual cortex during the presentation of visual stimuli 434 

following nitrate, which the authors interpreted as indicating an enhanced neurovascular 435 

coupling of local CBF to neuronal activity. The BOLD signal itself simply represents the 436 

contrast between the magnetic signals of oxygenated and deoxygenated haemoglobin, and 437 

therefore, as Aamand et al note, it cannot disentangle the contributions of changes of blood-438 

flow/volume and changes in oxygen consumption to the overall signal. In the present study, 439 

the predominant finding of reduced blood flow, with the concentration of deoxy-Hb 440 

remaining largely unaffected, would most likely have also resulted in a reduced BOLD signal 441 

as the overall concentration of deoxy-Hb increased in proportion to the larger decrease in 442 

blood volume in the interrogated area.  443 

Typically, and as in the placebo condition here, performance of the RVIP task results in a 444 

smaller increase in CBF than does performance of the Serial Subtraction tasks (see, for 445 

instance, Kennedy et al. [52]). This can largely be attributed to the relative cognitive demands 446 

of the two tasks, with Serial Subtractions requiring the continuous retention of information in 447 

working memory and the active mathematical manipulation of numbers throughout the task, 448 

whereas RVIP simply requires the monitoring of rapidly changing digits along with a more 449 

passive contribution from working memory (i.e. remembering whether the last two digits 450 

were odd or even). The overall pattern of CBF is therefore as expected, but singularly more 451 
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exaggerated than normal; a finding which was also observed in Aamand et al. [51] and which 452 

they argue represents an  “enhanced hemodynamic coupling” between activity and local 453 

blood-flow. In this case the accentuated reduction in CBF may potentially represent a more 454 

sensitive match between blood flow and activity during the RVIP task. Of course this begs the 455 

question as to why blood flow was comparatively unchanged during the more difficult Serial 456 

Subtractions. Whilst no clear explanation can be provided, it may be pertinent that these tasks 457 

are self-paced (with participants actively performing the subtractions as opposed to passively 458 

monitoring digits in the RVIP) and that performance on one of the two serial subtraction tasks 459 

was improved.  460 

Interestingly, reference to figure 4 demonstrates a nitrate-induced exaggeration of the normal 461 

(placebo) CBF response. This sensitivity of NIRS (to oscillating pattern of CBF changes) has 462 

also been demonstrated with the stilbene polyphenol (and NO-modulator) resveratrol; where 463 

serial subtraction performance consistently increased total- and deoxy-Hb (and to a lesser 464 

extent oxy-Hb) across the entire 36 minute post-dose task period, compared to interspersed 465 

decreases in response to the RVIP task [52]. In terms of an explanation for these effects, at 466 

least two distinct NO-related mechanisms may be involved here. Firstly, these results may 467 

represent an exaggeration of the NO-mediated relationship between task-related neural 468 

activity and the local neurovascular response. The relationship between increased cognitive 469 

workload and augmented CBF has been demonstrated with NIRS previously with Son et al. 470 

[53] reporting an amplified CBF response as a result of increasing workload and Shibuya-471 

Tayoshi et al. [54] evidencing a greater CBF response to the difficult, versus the easy, aspect 472 

of the Trail-Maker task. Taken together, the RVIP task could be conceived as requiring less 473 

cognitive resources (or indeed frontal involvement) than the mental arithmetic serial 474 

subtraction tasks. 475 
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As well as this exaggerated response, this study also reports reduced CBF during all tasks by 476 

the end of the cognitive task period. As such, a second, related, explanation for these results is 477 

that both the improved performance during the Serial Subtractions and reduced CBF during 478 

the RVIP task reflect improvements in cellular oxygen utilisation driven by NO synthesis, 479 

with reduced CBF reflecting a decreased need for additional metabolic substrates. This 480 

interpretation is supported by concomitant (non-significant) reductions in concentrations of 481 

deoxy-Hb seen during the periods of reduced CBF; suggesting decreased oxygen extraction. 482 

In this respect the expected pattern would be for the concentration of deoxy-Hb to increase 483 

with decreasing CBF as it became a greater proportion of the overall blood volume, and vice 484 

versa (e.g. the opposite pattern is seen during the first 60 minutes of the absorption period, 485 

with increased CBF engendering decreased deoxy-Hb).  486 

In terms of mechanisms underlying the effects seen here, as well as acting as a vaso-dilator 487 

during local neural activity [5-7] previous research suggests that NO exerts a number of 488 

effects that might also impact on overall cellular energy consumption in the brain. These 489 

include the inhibition of mitochondrial respiration and therefore oxygen consumption, 490 

including via inhibition of cytochrome c oxidase [55, 56] and enhancement of the efficiency 491 

of oxidative phosphorylation by decreasing slipping of the proton pumps [57, 58]. In line with 492 

this, increased efficiency of oxidative phosphorylation has recently been demonstrated in 493 

human mitochondria following nitrate supplementation, with this effect correlating with 494 

reduced oxygen cost during exercise [59] and a trend for reduced oxygen uptake during 495 

exercise at 50% of VO2 max, without detrimental effects to physical or cognitive 496 

performance [20]. Evidence too suggests that nitrite itself may function in respiration as an 497 

alternative electron acceptor to oxygen [60] and that it acts as an important cellular signalling 498 

molecule independent of its relationship with NO [10]. 499 
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With regards cognitive performance, improvements were observed in this study but restricted 500 

to one of the three tasks (serial 3 subtractions). Differential levels of cognitive demand, speed 501 

of performance and the involvement of disparate cognitive domains across these three tasks 502 

make global improvements by any intervention unlikely. The serial 3s task itself requires 503 

resources in terms of working memory, psychomotor speed, and executive function. It is 504 

therefore inextricably linked to frontal cortex function. It should be noted that the dietary 505 

nitrate group under-performed placebo at baseline on this task and, as pre-treatment 506 

performance was used as a covariate in the ANCOVA, it is possible that this factor 507 

contributed to the significant improvement seen at post-dose. Whether the improvements seen 508 

here following nitrate were dependent on poor performance, and therefore a greater sensitivity 509 

to any benefits derived from the intervention, remains to be investigated further.   510 

It is important to note that beetroot contains a plethora of other, potentially bioactive, 511 

phytochemicals including the nitrogenous betalains, a range of phenolics, including multiple 512 

flavonoids and flavonols [61] and folates [62]. Given the ability of similar phytochemicals to 513 

modulate peripheral endothelial function [63, 64], CBF parameters [52] and cognitive 514 

function [65] the possibility that any effects are related to high levels of these other 515 

compounds cannot be ruled out. It is also notable that the NO3
-
 /NO2

-
/NO pathway is reported 516 

to be most prevalent during hypoxic conditions and in the presence of reducing agents such as 517 

vitamin C and polyphenols [8]. Having said this, recent evidence from a study directly 518 

comparing nitrate rich beetroot juice to nitrate depleted (but otherwise identical) beetroot 519 

juice suggests that the effects seen on blood pressure and the O2 cost of exercise are directly 520 

attributable to the nitrate content of the juice rather than to any other bioactive components 521 

(although synergies cannot be ruled out) [66]. Given the potential for both phytochemicals 522 

and gustatory factors to impact on CBF, an extension of the current study using these nitrate 523 
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rich and depleted interventions may be able to resolve the question of the direct contribution 524 

of nitrate to the cognitive and CBF effects seen here. 525 

Notably, the consistent reductions in blood pressure following dietary nitrate reported 526 

elsewhere [16, 17, 22] were not seen here. Further, the significant drop in heart rate in the 527 

placebo group from pre-dose to post-assessment was not matched in the dietary nitrate group. 528 

The difference in experimental paradigm between the current and aforementioned studies may 529 

provide an explanation for this less clear- cut effect. Previous studies either involved 530 

participants who naturally consume a diet high in levels of dietary nitrate (i.e. Japanese) or 531 

assessed the effects of dietary nitrate during exercise; which, as stated above, enhances the 532 

reductive pathway of nitrate to NO [14]. Taken together, the effects of nitrate (and NO) on the 533 

peripheral vasculature might therefore not be expected in sedentary humans after an acute 534 

dose of dietary nitrate. This lack of an effect on blood pressure could also be attributed to 535 

these measures being taken within the period of atypical physiological arousal following a 536 

venous blood sample and completion of demanding cognitive tasks, rather than reflecting a 537 

treatment related effect, or lack of the same in the case of blood pressure. Future studies might 538 

therefore bear this in mind and incorporate longer periods of rest between potentially stressful 539 

or arousing events and the taking of physiological readings.  540 

Overall, the findings here suggest that supplementation with dietary nitrate can directly 541 

modulate important physiological aspects of brain function and improve performance on a 542 

cognitive task that is intrinsically related to prefrontal cortex function. Taken alongside a 543 

previous demonstration of increased prefrontal cortex perfusion in elderly humans following 544 

consumption of a high nitrate diet for ~36 hours [67], the results here suggest both a specific 545 

food component and physiological mechanisms that may contribute to epidemiological 546 

observations of relationships between the consumption of a diet rich in vegetables [68, 69] 547 

and polyphenols (which naturally co-occur with nitrate in vegetables) [70, 71] and preserved 548 
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cognitive function in later life. Of particular importance, the results here were demonstrated in 549 

young humans, who can be assumed to be close to their optimum in terms of brain function 550 

[72], and hint at the potential benefits of a healthy, vegetable rich diet across the lifespan. 551 

In summary, dietary nitrate, administered as beetroot juice, modulated CBF in the prefrontal 552 

cortex during the performance of cognitive tasks that activate this brain region, with this 553 

effect most consistently seen as reduced CBF during the easiest of three tasks; RVIP. 554 

Cognitive performance was improved on a further task; serial 3 subtractions. These results 555 

suggest that a single dose of dietary nitrate can modify brain function, and that this is likely to 556 

be as a result of increased NO synthesis leading to an exaggerated neurovascular response to 557 

activity or improved efficiency of cellular metabolism.  558 

 559 
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